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Reactions with three charged particles in final state 

G V Avakov, A R Ashurov, V G Levin and A M Mukhamedzhanov 
Institute of Nuclear Physics, Moscow State University, 117234 Moscow, USSR 

Received 14 September 1983, in final form 14 November 1983 

Abstract. Three-particle Coulomb asymptotic states are derived. The knock-out reaction 
amplitude with distorted waves in the initial and final states is extracted using the Faddeev 
equations. The conditions are discussed under which this amplitude can be approximated 
by the distorted wave impulse amplitude. The influence of the Coulomb final state 
interaction on the differential quasielastic knock-out c h s s  section is investigated. To this 
end the main singular part of the DWIA amplitude is singled out and compared with 
conventional approximations. The application of the present results to the (e, 2e) reactions 
will be done in the next paper. 

1. Introduction 

We shall consider the reaction 

1 + (23) + 1 + 2 + 3 (1) 

where (23) is the neutral bound state of particles 2 and 3; particles 1, 2, 3 are 
non-identical, spinless charged particles. In principle, the rigorous theory of these 
processes, within the framework of the three-body problem based on the solution of 
the Faddeev differential equations, is developed by Merkurjev (1981). However, the 
calculations in Merkurjev’s approach have not yet been undertaken because of the 
computational difficulties. It is, therefore, of interest to find simple methods for 
calculating the reaction (1) amplitude such that the main characteristics of the process 
could be taken into account. 

Specifically, we are interested in quasielastic knock-out reactions with charged 
particles, in particular, the (e, 2e) process. To calculate these reactions, the formalism 
of the distorted wave impulse approximation (DWIA) has been used (McCarthy and 
Weigold 1976). In this paper we attempt the derivation of the reaction (1) amplitude 
with distorted waves in the initial and final states (DWA) within the framework of the 
three-body problem. Using the Faddeev equations we extracted the DWA amplitude 
MDWA from the exact amplitude. This amplitude is represented as an infinite series, 
every term of which corresponds to the definite mechanism. The first term of the 
series is the usual DWIA amplitude M D W I A .  For the pure Coulomb interactions between 
particles 1, 2 and 3 M D W A  may be approximated by N M D W I A  where N is the 
renormalisation factor, whose appearance is due to the influence of mechanisms more 
complicated than the impulse approximation. 

The calculations are performed in different approximations because of the computa- 
tional difficulties. These include the factorised DWIA (Dixon er al 1978) and the eikonal 
approximation (Ugbabe er a1 1975). In as much as reaction (1) yields three charged 
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particles, the purely Coulomb part of the interaction strongly affects the process 
characteristics at low incident energies. In this case, different approximations require 
due care because of the long-range character of the Coulomb interaction. Therefore, 
taking the ee-scattering off -shell amplitude outside the integral defining the matrix 
element (as is done in the factorised DWIA for (e, 2e) reactions) can distort the final 
result, but this, however, is disguised by the distortion effects calculated in the optical 
model. It will also be noted that the correct inclusion of the Coulomb interaction in 
the eikonal approximation is not a simple task. For example, the papers Dixon er a1 
(1978) and Stefani and Camilloni (1978) suggest the eikonal approximation wherein 
the distorted waves are replaced by the equation 

, y r ) ( r )  =exp(-ykR) exp[i(l + p + i y ) k r ]  (2) 

where y, p and R are the adjusting parameters. This approximation is valid for the 
initial distorted wave, describing the scattering of electrons by an atom. However, for 
the final distorted waves describing the electron scattering by ions, such an approxima- 
tion is not valid since it is well known (Merkurjev 1977) that the main term of , y r ) ( r )  
at r + a( kr # kr) is given by the Coulomb distorted plane wave, exp[ikr - it7 In( kr - kr)] 
where 7 is the Coulomb parameter which cannot be approximated by equation (2). 

This paper is devoted to the investigation of the influence of the final state Coulomb 
interaction on the angular dependence and the absolute value of the quasielastic 
knock-out differential cross section. We have neglected the distortions in the initial 
and final state due to the polarisation interactions (i.e. interactions which are decreasing 
at large distances more rapidly than the Coulomb one). These polarisation interactions 
can be included in the calculation, for example, in the eikonal approximation, as was 
done by Stefani and Camilloni (1978). 

Without solving the Faddeev-Merkurjev equations, we extract the main singular 
term of the reaction amplitude in an explicit form near the quasielastic peak which 
will be helpful in calculating the quasielastic knock-out cross section and, also, in 
studying the accuracy of different approximations used in atomic physics to take into 
account the Coulomb effects. The formulae obtained in what follows can be used for 
arbitrary charged particles. The results of calculations for the (e, 2e) reactions will be 
given in the next paper. 

2. Three-particle Coulomb asymptotic states 

We first consider the two-particle Coulomb scattering. In van Haeringen (1976) the 
scattering theory of two charged particles is developed using the so-called Coulomb 
asymptotic states (CAS) which are the generalisations of the usual asymptotic states 
(8-functions in the momentum space or plane waves in the coordinate space) for the 
case of charged particles. In the momentum representation the CAS is determined by 
the relation 

[ p 2 -  (k  + i8)*]’” 
( p  (ka) = 8.rr exp(-k~r])r(2+ir])  lim 2 2+i7’ & + o [ ( p - k ) 2 + 8  3 (3) 

Here r ]  =Z,Z2p/ k is the Coulomb parameter, k and p are the relative momentum 
and reduced mass of the interacting particles. At r ]  = 0 ( p  1 km) = ( 2 d 3 8 (  p -  k). In 
what follows it will be seen that the most singular term of the Fourier transform of 
the Coulomb distorted plane wave is, in fact, the CAS ( p  I km). The main term of the 
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distorted plane wave in a non-singular direction ( k r f  kr) at r+m is given by the 
expression (Merkurjev 1977) 

xio) ( r )  = exp(i(kr + w)], W = ~ l n ( k r - k r ) .  (4) 

Then the Fourier transform of xio)(r) is 

Here q = k - p  and 2(kq+iki3) = (k+i6)2-p2+q2+S2.  The most singular term of 
xio'( p) at q2 + 6' = 0 is identical with ( p l k ~ ) .  Thus, xi0'( r )  is the main term of the 
CAS in the coordinate representation at r + W. 

From this result we can now define the three-particle CAS. The main term of the 
three-particle distorted plane wave in a non-singular direction is given by the relation 
(in the CMS system) (Merkurjev 1977) 

&!k2(R) = exp[iKR + W] ( 5 )  

where 

w =  wl2+ w13+ w23, 

T P Y  = ZPZvPLBv/kSr, 

w,, = T P Y  In Tar 

5& = kd, ,  - k d P Y ,  

R = {put r p y }  and K = {ka, kPy} are vectors of the six-dimensional coordinate and 
momentum space, respectively; ray = r, - r,, pu is the radius vector connecting particle 
(Y and the centre of mass of the pair p + y ;  k,, = (mykp - msk,)/m,,  is the relative 
momentum of particles p and y ;  m,,= m,+m,;  r,, k,, ma are the radius-vector, 
momentum and the mass of particle p, respectively. The Fourier transforms of xi:lk2 ( R )  
is the convolution of the Fourier transforms of xi:: : 

-3  ( 0 )  xi:),k2(pl?p2) = dp(2V) X~,2(P)XJrq),(Pl-kl-P+k12+k13) 

x XiP,',(P2- k2+ P - kl2+ k23). ( 6 )  
Replacing each function xi:), ( p,,) in equation (6) by the corresponding main singular 
term, i.e. by CAS (p,,lk,,co) we arrive at the expression for the three-particle CAS: 

(P IK~)=(P l ,pz lk l ,  k2a) 

= d p ( 2 ~ ) - 3 ( p ( k m ) ( p l - k l - ~ +  klz+k13Ik1303) 

(P2-k2+P-klz+k231k23°0), 

p1 +pZ +p3 = O? kl + k2 + k2 = 0. 
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d(pl,p2) =(  8 - E  -iS)'"(m12/4k:2)11~2(m13/4k:3)iT13 

X (m23/4k:3)i"23 e-"""r( 1 - iq)  (9) 
where f(P) =f(pl,  p 2 )  is a regular function at p1 = kl and p 2  = k2 and f ( P )  E %,(R6); 
P = { { p 3 , p 1 2 } ,  8 = ~ : / 2 p ~ + p : ~ / 2 p ~ ~ ,  E = k : / 2 p 3 + E 1 2  is the total three-particle 
energy, Eij = k $ / 2 p i i ,  q = q I 2 +  q l 3 +  7 2 3 ,  p3 = m3m12/M, M = ml + m2+ m3. We have 
omitted here the cumbersome proof of equation (8). It will be noted that in derivation 
of this relation one should take into account that the two-particle CAS'S in equation (7) 
have their own infinitesimal S + +O. The expression (8) implies that on the class of the 
functions f ( P ) (  8 - E -is)'", S -, +0, where f ( P )  is a regular function at the point P = K ,  
the three-particle CAS acts as 

(PIKa) = ( ~ T ) ~ S ( P - K ) ~ - ' ( P ~ ,  P Z ) ,  (10) 

S ( P - K )  is the S-function in the six-dimensional momentum space. 
It should be noted that the expression (10) coincides with the asymptotic state 

obtained by Komarov et al (1983) within the framework of non-stationary 
formalism. However, equation (10) is valid only on the class of the functions 
f ( P ) (  8- E -iS)'" where equations (7) and (10) are equivalent, however, in the 
general case the expression (7) must be used for the three-body CAS. 

3. Quasielastic knock-out amplitude with three charged particles in the final state 
for infinitely heavy particle 3 

3.1. 

The reaction amplitude can be written as 

M =(*(-)I Uz31Qi). (11) 
Here Uns = V- Vas, V = VI2+ VI3+ V23, Vas is the interaction potential of particles 
CY and 6, that is, in general, the sum of Coulomb and polarisation potentials, 

@ i  = eXP(ikiP1)(P23(r23), (12) 
ki is the relative momentum of colliding particles, ~ 2 3  is the bound state (23) wavefunc- 
tion. The three-particle wavefunction 9(-) describing the scattering of three charged 
particles can be written as 

9 (13) 9(-) = 9 ( 1 2 ) ( - )  + G(-) V 9 ( 1 2 > ( - )  
12 

where Y(12'(-) is the three-particle wavefunction neglecting the interaction of particles 
1 and 2, 

Ho is the operator of the total three-particle kinetic energy. The wavefunction Y(12)(*) 
satisfies the equation 

G(*) = (E - Ho- V* iS)-', 

y ( l Z ) ( * )  k,,k2 = Ikl, k 2 a  *) + ( E  -Ho * i6)-' ~ 1 2 9 ~ , ~ ~ ~ ) ,  

Ikl, ha+)= Ikl, k2Q3>, 

S - ,  +o, 

(14) 

( k l ,  k2Q3-)= Ikl, k2m+)*. 
Note that in equation (14) the inhomogeneous term is the three-particle CAS which 

is defined by equation (7) in the impulse representation. In the coordinate representa- 
tion this CAS is the Coulomb distorted plane wave. 
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(15) 

is the wavefunction describing the collision of incident particle 1 with bound state 
(23). When ml,2<< m3 (for example, in the reaction (e, 2e)) the terms - m1,2/m3 can 
be neglected. Then the solution of equation (14) can be written down in the impulse 
representation as 

y ( 1 2 ) ( + )  

Yf)( p) is the Coulomb wavefunction in the impulse representation. If we insert this 
equation into equation (15) then, by virtue of orthogonality of discrete and continuum 
wavefunctions of particle 2 in the field of infinitely heavy particle 3, the first term in 
equation (15) will be equal to zero and 

-3 (+) 
kl,k2 (p19p2) = dp(2n) Yk, (P1-P+k12)Y~’(P2+P-k12)(Plk12COf), (16) I 

M = (Y(12)(-)1 VI2pP$+)). (17) 
This expression for M including equation (16) is the generalisation of the known 
formula for the knock-out reaction amplitude (in post-form) with infinitely heavy 
particle 3 (Baz er a1 1971) to the case of three charged particles in the final state. 

3.2. 

From the Faddeev equations for Vi+) we single out the elastic component Y!,:,) 
describing the elastic scattering of particle 1 from the bound state (23). This enables 
us to extract from the amplitude M the term with distorted waves in the initial and 
final states in an explicit form. At m3 = 0;) the Faddeev equations are reduced to two 
equations (Baz er a1 (1971)) which can be recorded as 

(18a, b )  $g = ht+) 
23 u23YS) q(+) 23 - - ei + GS) v ~ ~ C Z ) ,  

where 

vi+) = y(+)+$.(+) 23 23 7 G&) = ( E  - Ho- V,, +is)-’, 

6;) = ( E  - H~ - U,, + iS)-I, Gg’ =(E-Ho+iS)-’ ,  s-, +o. (19) 
It should be noted that for charged particles the differential Faddeev-Merkurjev 
equations (Merkurjev 1981) must be used. These equations are not solved here yet, 
they are used to rearrange equation (18). Therefore, we can use the usual Faddeev 
equations (18) on the assumption that all Coulomb potentials are screened. Neverthe- 
less, the final result is valid for unscreened Coulomb potentials as well. 

From equation (18) and (19) we obtain 

Y;+)= &g)~230i + &g)~23@S), (20) 
where 

Q, = G ~ ) V Z ~ Q ~ ,  &$:) = G(+) 0 + e(+) 23 U 23GbC’, GI:’ V23 = Gc’T23. 

Here, T,, is the scattering operator of particles p and y in the three-particle space. 
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For T 2 3  the spectral decomposition can be written as 

T23 = v231(923)g l ( (923 /  v23+ v 2 3 1 ( 9 g ' ) g ' l n ' ( ( 9 g ' I  v23+ ?23, (21) 
n 

gi"' = ( E  + E & )  - H ~  +is)-', 

H1 is the operator of relative kinetic energy of particle 1 and the centre of mass of 
(23), E & )  is the binding energy of the nth bound state of (23). For the ground state 
4:' = E233 

(9:": (923 and 81'' g1= ( E  + ~ 2 3  - H I  + is)-'. 
It should be noted that 

E',"' = E + &E), P I =  m i m 2 3 / M .  

In equation (21) the first term is the contribution to TZ3 from the pole correspond- 
ing to the ground bound state of (23); the sum X n  contains the contributions from 
other poles corresponding to the excited bound states of (23); ?23 includes the 
contributions from the Born term V,, and the continuum. 

It is easy to see that 

T ( k ,  k,) =(k, ( ~ 2 3 / V z 3 I @ i r : f ) ) = ( k ,  ( P z 3 I v z 3 6 g ) u 2 3 1 * g ) )  

T'"'( k, ki) = (k, (9:;) I v 2 3 6 g '  u 2 3 1 q g ' )  

(22) 

and 

(23) 

are the half-shell amplitudes of the elastic and inelastic scattering of particle 1 on (23). 
Substituting equation (20) into (17) and taking into account equations (22) and (23) 
provides 

M = M,+C M,  + 6, (24) 
n 

MO = (qi',?i!-)l v 1 2 6 2 3 v 2 3 \ * t ! d 9  (25) 

d k ( 2 ~ ) - ~ ( ~ y , f p l  V I 2 6 g )  V231(9&),  k)(E\"' - k2/2p1 +iS)-'T("'(k, ki), (26) M,, = 

ii = (qj,.',S:-)l ~ 1 2 6 g ) ? 2 3 / $ g ) ) .  (27) 

I 
Here 

(28) q(+) - @ ( + I  
k,,ei - k, (923 

is the elastic component of q{+'. In the momentum representation 

In the numerical calculations @ c) can be approximated by the optical wavefunction 
xr'. In this case MO is converted to the DWA amplitude 

MDWA =(qr,fi:-)l V 1 2 6 ; : 5 ' v 2 3 ) ( 9 2 3 ~  A':)). (29) 
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Thus, from the exact amplitude M we extracted the DWA amplitude containing the 
distorted waves in the initial and final states. The reaction mechanism in the DWA, 
i.e. the reaction amplitude in the plane wave approximation, is given by the expression 

B = (k17 k2l vi2&)V23((P23, ki). (30) 
This amplitude can be represented as a sum of the infinite series of non-relativistic 
Feynman graphs (see figure 1 ) .  Each graph of this series corresponds to the definite 
member of the expansion. 

ViZeg’ = TizGb+’ + T12Gb+’T13Gb+’ + Tl2Gb+’T13Gb+’Ti2Gbf’ +. . . . (31) 
As can be seen from equation (31) and figure 1 the amplitude M D W A  contains the 
contributions from all possible rescatterings of particle 1 from particles 2 and 3 after 
knock-out of particle2. The first member in M D W A  is the DWIA (distorted wave 
impulse approximation) amplitude M D W I A .  Thus the extracted amplitude M D W A  is 
not identical to M D W I A .  As opposed to the DWIA, the DWA is based on the three-particle 
dynamics. From the results of the work (Mukhamedzhanov 1982) it can be shown 
that for the purely Coulomb potentials inclusion of all Coulomb scatterings of particle 1 
from particles 2 and 3 leads to the simple renormalisation of the amplitude M D W I A ,  

i.e. the main term of M D W A  can be written in the form 

M ~ & A  = NMDWIA? 

MDWIA = WL:Z‘,-’I T12Gb+’ v z 3 1 ~ 2 3 ,  XK)). (32) 
We have omitted here the formula for N, which will be given in the next publication. 
The main terms of M,, and fi for the purely Coulomb potentials V,, are given by 
the expressions 

M‘,“’ = NnMn,DWIA, 

~ ~ ( ~ P ) - ~ ( Y L ~ T ~ , ~ - ’ I T ~ , G ~ + ’ V , , ~ ( P ~ ; ’ ,  k) (E!”’-  k2/2p1 +i8)-’T‘”’(k, ki), 

f i ‘ s ’=  fiG 
(33) 

(34) DWIA? 

yJ$\+!W + ... 
1 2 2 1 3 3 

Figure 1. The reaction amplitude in the plane wave approximation represented as a sum of 
the infinite series of non-relativistic Feynman graphs. 
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Thus the main term of the quasielastic knock-out reaction amplitude for the pure 
Coulomb potentials V,, is then 

(36) M(S) = Mb" + M',"' + j$p. 
n 

Equation (36) is one of the main results of this work. For the ( e ,  2 e )  reaction on 
atoms at high incident energies (Ei >> ~ 2 3 )  the inelastic scattering amplitudes can be 
calculated on the Born approximatio_n. Since these amplitudes are negligible at high 
energies the amplitudes M',"' and M(' )  are small as compared with M D W A  near the 
quasielastic peak. Besides at high energies IN1 = 1 and the reaction amplitude M near 
the quasielastic peak can be well approximated by M D W I A  (equation (32)). The 
concrete calculations for the (e, 2e) reaction will be given in the next paper. 

3.3. 

Our primary purpose in this work is to study the influence of the Coulomb scattering 
in the final state upon the amplitude M D W l A  in the region of the quasielastic peak that 
is described by the wavefunction 9 ~ ~ ~ ~ ~ - ' .  In what follows all the potentials V,, will, 
therefore, be regarded as the purely Coulomb ones. Let us consider equation (32) 
and extract its main term near the quasielastic peak resulting from the nearby singularity 
of the reaction amplitude in the a-plane at a = q 2 +  x i 3  = 0 ,  q2 = (k; - kl - k2I2, x i 3  = 
2 p 2 3 & 2 3  (Avakov e? a1 1972). Therefore, the most singular part of MDWIA at a = 0 
provides the main contribution to the quasielastic peak and the extraction of the main 
term of MDWIA is equivalent to the extraction of the most singular part of MDWIA.  

Consider equation (32) in the momentum representation. Since our interest is to 
study the influence of the Coulomb final-state rescattering we replace the initial 
distorted wave xc' by the plane wave IkJ. As was noted the polarisation effects can 
be included using the eikonal approximation. Then for M D W l A  we get 

M D W I A ( ~ ;  ki,  kz)  

where we used 

~ 1 2 ( P ; , P 1 2 ;  p 3 9 4 1 2 ;  E12) = ( 2 7 d 3 m 4  -P3) t lZ(P12 ,412;  E121 

and t12 is the half-shell amplitudes of the Coulomb scattering of particles 1 and 2 ;  
q 1 2 =  ki - (ml /mlz) (pl+p2) ,p12=(m2p1-mlp2) /m12 are therelativemomenta of par- 
ticles 1 and 2 before and after scattering, respectively; E l z =  k:2/2~12, 4 2 3  = ki-pi -PZ 
is the momentum of particles 2 in the bound state (23),  ki is the momentum of the 
incident particle 1.  Besides, it was taken into account that [9ktfii-'( pl ,  p2)]* = 
* ( I Z ) ( + )  

The singularity of the integral (37) at a=O results from the coincidence of the 

a 2 3 = q : ,  + x i 3  = o  (38) 
with the singularities of the wavefunction Y k l l f ~ ~ ) ( p l ,  p2) at p1 = kl and p2 = k2. The 
wavefunction ( P 2 3 ( 4 2 3 )  can be written as (Blokhintsev er a1 1977): 

k,,k2 (p1,pZ). 

singularity of the function fl2(p12, 412;  & 2 ) ( P 2 3 ( 4 2 3 )  at 

( P 2 3 ( 4 2 3 )  = @ ( 4 Z 3 ) / a : ; ' 0  (39) 
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where 7l0 = Z 2 Z 3 m 2 / x 2 ,  is the Coulomb parameter of particle 2 in the bound state 
(23), C t ( q 2 3 )  is the reduced vertex form factor which is regular at ~ 2 3  = 0. At ~ 2 3  = 0 
q2  1 2 -  - k I 2 ,  i.e. ~ 2 3 = 0  is the singular point of t 1 2 .  At q I2+  k I 2  we have (Dolinsky and 
Mukhamedzhanov 1966, van Haeringen 1976) 

f 1 2 ( P 1 2 >  4 1 2 ;  E 1 2 j  

2 2  G = ( p 1 2 / m 2 ) u 2 3 = q : 2 -  k:,-iS, u‘=pl2-tcI2-iS,  q I i = k l - k i .  If we insert 
relations (39) and (40) into equation (37) and take outside the integral sign all 
the factors that are regular at ~ 2 3  = O  and u’=O at points p1 = k ,  and p 2 =  k2,  
then at or near the singularity U = 0 

(2  k 1 2 ) - 2 i ” 1 2 (  qi 1 ) - 2 - 2 i ” ~ 2  W23( q ) J ,  2 c”lz i“12  

MDWlAz-2  e x p ( - . r r ~ 1 2 ) k 1 2 1 7 1 2 1 r ( 1 + i ~ 1 2 ) ~  ( m 2 )  

(41) 

In order to extract the most singular part of MDWrA at a=O we must substitute 
equation (16) into equation (42) and perform the integration over p1 and p2 and, then, 
over p. When the main term of J is separated out from the integrals over p1 and p2 
the factor (U’)’’’I~ can be taken outside the integral sign at points p1 = k ,  + p -  k12 and 
p 2  = k2 - p + k12 which are the singular points of the Coulomb wavefunctions qc’( p, - 
p+ kI2)  a n d 9 c ) ( p 2 + p -  k12) (Guthand Mullin 1951),i.e. the factorisation provides 

(43) ( U ’ ) l ? 1 2  = ( p 2 -  k : ,  -i6)lvi:. 

Consider now the integral over p,:  

L ,  = [ dp1(2T)-3u;:+?, ,+’ .1~q(+l  k l  (PI-P+k12).  

From Cauchy’s theorem 

(44) 

where the integral over x is taken along a closed contour so that the singularity x = ~ 2 3  

is inside this contour. Substituting equation (45) into equation (44) we can calculate 
the integral over p1 by using the formula 

17, = Z,Z3mp/ k,. This relation can be obtained by going over to the coordinate 
representation (Guth and Mullin 1951). Inserting the expression obtained into the 
integral over x one can easily separate the main term of the integral over x. The 
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integral over p2 is calculated in complete analogy with the integral over pl. Then the 
final expression for the main term at U + 0 of the reaction amplitude in the Coulomb 
distorted wave impulse approximation is 

Thus, by virtue of equation (39) at cr -+ 0 
- 1 + t ) p (  V I  + '72- 7, >), 

M D W I A ( k i ;  kl, k2)-' 

Let us now discuss why it is important to have the correct knowledge of the true 
behaviour of the reaction amplitude at U -+ 0. In the dispersion approach (Avakov et 
a1 1972) the quasielastic peak at q2 = 0 is due to the presence of the nearby singularity 
at a=O in the reaction amplitude. The character of the singularity u=O of the 
amplitude MDWIA is defined by equation (48). To compare the proximity of the singular 
point u=O to the point of the quasielastic peak q 2 = 0  it is convenient to introduce 
the dimensionless variable z =cos U = -k ,ki /  kski, where k, = -kl - kZ. Then the point 
z = 1 at the boundary of the physical region (-1 G z G 1) corresponds to the point 
q 2 = 0  and 

lying in the unphysical region corresponds to the singularity point U = 0. At quasielastic 
peak (with the neglect of the distortion effects) 

5 =  1 + ( m 2 1 m 1 ) ~ 2 3 1 E i .  (50)  

For the (e, 2e) processes at incident electron energies Ei of the order of several 
hundreds of eV 6 = 1 .  For example, for the (e, 2e) reaction on He at Ei = 400 eV 
6 = 1.03. Hence, the singularity of the reaction amplitude at z = 5 is in close proximity 
to the quasielastic peak. The main contribution to the reaction amplitude near the 
quasielastic peak is, therefore, provided by the main term at U = O(z = 6 )  which can 
be helpful in calculating the angular distribution and the absolute value of the differen- 
tial cross section near the quasielastic peak. 

The concrete calculations of the DWIA amplitude are performed in different approxi- 
mations. The formula (47) enables one to estimate the accuracy of these approxima- 
tions. For example, the main singular term of the factorised DWIA (FDWIA) (Dixon 
et al 1978) at u + O  is related to as 

(51) M(S) 
DWiA = D F M P A W ~ A  

where 
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Evidently, that the factor DF can be used to determine an error in the absolute value 
of the FDWIA amplitude at the quasielastic peak. 

For the Coulomb distorted wave Born approximation (CDWBA) (Namuri and Chen 
1982) 

M%IA = DCM%WB.A (53) 

Dc = [r( 1 + iqI2) exp( - 7rqI2/2)] DF/ c-~’I~.  (54) 

where 

The results of calculations of the ( e ,  2 e )  and ( e + ,  e+e )  reactions on atoms in the 
symmetric complanar kinematics will be given in the next paper. 
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